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Lay Summary 1 

 2 

In an analysis of published studies to date, we found that physiological 3 

measures of stress were not associated with the expression of traits used to attract 4 

mates. We found, however, that stress had a detrimental effect on opposite sex 5 

preferences, so that individuals with physiological evidence of high stress were less 6 

attractive to the opposite sex. This suggests that stress may mediate attractiveness to 7 

the opposite sex, but that we do not yet know which physical or behavioural traits 8 

signal stress. 9 

 10 
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 26 

 27 

 28 

Title: Stress and sexual signalling: a systematic review and meta-analysis 29 

 30 

Short title: Stress and sexual signalling 31 

 32 

Abstract 33 

 34 

The vertebrate stress response has been shown to suppress investment in 35 

reproductive and immune function, and may also lead to a reduced investment in the 36 

production of secondary sexual traits. However, it has been difficult to model roles of 37 

stress in sexual selection due to the inconsistent results seen in empirical studies 38 

testing for the effect of stress on the expression of secondary sexual traits. We 39 

conducted a phylogenetically-controlled meta-analysis of published associations 40 

between physiological correlates of stress and sexual signalling in vertebrates in order 41 

to identify any consistent patterns. Our analysis included signalling in both males and 42 

females, four stress measures, and four categories of sexually selected traits 43 

(vocalisations, traits that varied in size, traits that varied in colouration, and opposite 44 

sex preference). Across 38 studies of 26 species there was no significant relationship 45 

between physiological correlates of stress and the expression of sexual signals. Mean 46 

effect size, however, varied significantly across the four types of sexually-selected 47 

trait. We propose development of a model which incorporates the nuanced effects of 48 

species ecology, trait type, ecological context and the complex nature of the 49 

physiological stress response, on the expression of sexually-selected traits. 50 
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 51 

 52 

 53 

INTRODUCTION 54 

 55 

There is a growing movement towards incorporating the organising role of 56 

stress (i.e. conditions where environmental demands exceed an organism’s regulatory 57 

capacity; Koolhaas et al. 2011) on the allocation of somatic resources, into life history 58 

models of behaviour (Buchanan 2000; Korte et al. 2005; Husak and Moore 2008; 59 

Bonier et al. 2009; Moore and Hopkins 2009). The vertebrate stress response, for 60 

example, includes adaptive activation of the hypothalamic-pituitary-adrenal axis 61 

culminating in the release of glucocorticoids (GCs), which divert resources away from 62 

long term functions and into short term priorities (Cote et al. 2006). While this 63 

promotes survival in the short term, chronically elevated GCs suppress reproduction 64 

(Sapolsky et al. 2000) and immune function (Martin 2009). GCs, then, may mediate 65 

the relationship between the environment and behavioural trade-offs.  66 

The potential for stress to influence the expression of secondary sexual traits 67 

has long been recognised by ecologists (e.g. Buchanan 2000). Originally, GCs were 68 

predicted to influence sexual signals indirectly via effects on the immune system 69 

(Møller 1995; Buchanan 2000) either independently or in interaction with testosterone 70 

(Buchanan 2000; Roberts et al. 2007; Husak and Moore 2008). While testosterone has 71 

received most attention to date, it does not account for complexity in the cross-species 72 

data, and GCs have been proposed to interact with the sex hormone in effects on 73 

secondary sexual traits (Roberts et al. 2004). More recently, the physiological stress 74 

response itself has been proposed to be under sexual selection, such that secondary 75 
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sexual traits provide cues to individual differences in, for example, stress reactivity or 76 

the efficiency of negative feedback (Pfaff et al. 2007; Roberts et al. 2007; Husak and 77 

Moore 2008; Bortolotti et al. 2009; Schmidt et al. 2012). Finally, GCs have been 78 

proposed to influence secondary-sexual traits indirectly via effects on body condition 79 

(Husak and Moore 2008).  80 

At first glance, empirical evidence for effects of stress on the expression of 81 

signals used to attract the opposite sex is inconsistent, with some studies reporting 82 

detrimental effects of physiological proxies of stress (e.g. Douglas et al. 2009), others 83 

an enhancing effect (e.g. Fitze et al. 2009) and some reporting no relationship (e.g. 84 

Setchell et al. 2010). Meta-analysis is well suited to determining common effects 85 

across a range of study systems, especially when empirical results are mixed and 86 

many studies may report non-significant results due to low statistical power (Arnqvist 87 

and Wooster 1995; Koricheva et al. 2013). Meta-analysis also allows us, sample size 88 

permitting, to investigate potential moderators of effect size which may generate such 89 

inconsistent results (Jennions et al. 2012; Koricheva et al. 2013). We thus performed a 90 

phylogenetically-controlled meta-analysis of published studies in which the effect of 91 

physiological proxies of stress on the expression of secondary sexual traits was 92 

reported. Our first aim was to crystallise any consistent relationships between proxies 93 

of stress and the expression of traits across species in order to determine which, if 94 

any, of the proposed roles of stress are best supported by the data. In addition, we 95 

analysed 4 potential sources of variation in the observed effect sizes: (a) the sex of the 96 

signaller, (b) the measure of stress; (c) the type of signal; and (d) taxonomic group.  97 

 98 

METHODS 99 

 100 
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(a) Literature search 101 

We conducted a systematic review of studies published up to November 2014 102 

concerning the relationship between stress and secondary sexual traits. We followed 103 

the PRISMA protocol for conducting systematic reviews (Moher et al. 2009, 104 

Nakagawa and Poulin, 2012). On November 22nd 2014, we searched for the following 105 

keywords using the TOPIC field in Web of Science (‘stress’ OR ‘glucocorticoid’ OR 106 

‘corticoster*’) AND (‘sexual trait’ OR ‘sexual selection’ OR ‘sexual signal*’ OR 107 

‘mate choice’ OR ‘attracti*’). We also contacted authors of relevant publications to 108 

identify any additional records. The number of records obtained from each of these 109 

approaches is given in the supplementary material. In Figure 1 we present a PRISMA 110 

flow diagram showing the number of records obtained from our searches, and the 111 

number of records excuded following the application of our selection criteria outlined 112 

below. 113 

 114 

[Figure 1 about here] 115 

 116 

(b) Criteria fot study inclusion 117 

We only included those studies in which the following criteria were met: (1) 118 

subjects were adults; (2) subject sex was specified; (3) physiological indices of stress 119 

were measured; (4) there was sufficient statistical information to calculate an effect 120 

size (either in the publication, or provided by the author). We excluded 13 studies 121 

which did not meet these criteria, as well as a subset of results from 1 further study 122 

(see Figure 1 and Table S1). This yielded a sample of 118 results from 38 studies of  123 

26 species (for all effect sizes see Table S3). We included data concerning both males 124 
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and females. We obtained effect sizes from four vertebrate classes: amphibians, 125 

reptiles, birds and mammals. 126 

Four categories of stress measurement were reported: baseline GCs, peak or 127 

total GCs produced in response to a stressor, experimental elevation of GCs, and 128 

long-term stress. Baseline GCs were typically measured within 3 – 5 minutes of 129 

capture (e.g. Douglas et al. 2009). Experimental elevation of GCs up to 4 times above 130 

baseline was achieved via subcutaneous implants containing GCs (e.g. San Jose and 131 

Fitze 2013). Long-term stress was assessed in three ways: GCs deposited in feathers, 132 

faeces or hair; the ratio of heterophils to lymphocytes (a white blood cell count that 133 

correlates with baseline GCs; Vleck et al. 2000); and the expression of heat shock 134 

proteins (highly conserved proteins that are elevated under stress; Sørensen et al. 135 

2003). Both heterophil-to-lymphocyte ratio (Davis et al. 2008) and heat shock 136 

proteins (Sørensen et al. 2003) are widely used as proxies of recent and long-term 137 

stress in the ecological literature. 138 

The effect sizes we obtained considered a wide range of secondary sexual 139 

traits, which we sorted into four categories: colouration, vocalisation, morphological 140 

traits, and opposite sex preferences. The colouration category included examples in 141 

birds, mammals and reptiles. The amount of colouration was measured in several 142 

different ways, including: brightness, hue, saturation, proportion of structure (e.g. eye 143 

ring) that is pigmented, UV reflectance and colour reflectance. The vocalisation 144 

category included singing in birds, and calling in amphibians and a mammal species 145 

(rock hyrax Procavia capensis). The parameters measured varied according to the 146 

nature of vocalisation in each species, and included song rate, complexity and 147 

repertoire size in birds; the latency to call, call duration, call rate and vocal effort in 148 

amphibians; and whether calling/singing was observed or not (rock hyrax, 149 
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amphibians). Effect sizes included in the morphological trait category all considered 150 

bird species, and assessed the size of secondary sexual characters, such as comb or tail 151 

length. We also included in this category effect sizes considering the size of a 152 

coloured structure (but not the colouration itself), such as epaulet size in the red-153 

winged blackbird (Agelaius phoeniceus). Finally, while not a secondary sexual trait 154 

per se, opposite sex preference was included as an indirect measure of the level of 155 

sexual signalling, with the assumption being that attractiveness to the opposite sex is a 156 

function of investment in secondary sexual traits. We rely on author judgements 157 

regarding whether each trait is a secondary sexual trait or not. For full coding of effect 158 

sizes for each moderator variable see Table S3.  159 

 160 

(c) Effect sizes  161 

We used Pearson’s product moment correlation coefficient (r) as the measure 162 

of effect size as it was easily computable from statistical information included in most 163 

of the studies returned by the systematic review, and is an intuitive measure of effect 164 

size that is widely used in meta-analysis (Rosenthal 1991). Here, r represented the 165 

magnitude of an association between a physiological index of stress and the 166 

expression of a secondary sexual trait, or of a difference in expression of a secondary 167 

sexual trait between individuals exposed to exogenous GCs and controls. If studies 168 

did not report r, it was computed from the available statistical information or from 169 

additional information provided by the author using using the Practical Meta-Analysis 170 

Effect Size Calculator (http://www.campbellcollaboration.org) following established 171 

methods (e.g. Rosenthal 1991). Table S2 gives full details on the calculation of effect 172 

sizes when r was not reported. If multiple valid effect sizes were presented for a given 173 

study we included them all, and controlled for the possible non-independence between 174 
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effect sizes arising from this by including study ID as a random effect in all models 175 

(see below). 176 

Before performing the analysis, all effect sizes were converted using Fisher’s 177 

z-transform of the correlation coefficient (Zr), which has more desirable properties 178 

than r when approaching ±1 (Koricheva et al. 2013). All models were run using Zr. 179 

Mean effect size estimates derived from the models were then converted back to r for 180 

presentation. The associated variance for each effect size was calculated as 1/(� − 3) 181 

(Borenstein et al. 2009). 182 

 183 

(d) Phylogeny 184 

Recent developments in meta-analysis have allowed researchers to control for 185 

the potential non-independence of effect sizes due to phylogenetic history, by 186 

incorporating phylogenetic relatedness as a random factor in meta-analysis models 187 

(Hadfield and Nakagawa, 2010). This can be done even when accurate branch length 188 

data is lacking. As there is no single phylogeny available for all species included in 189 

the analysis, we constructed a supertree by combining multiple trees from several 190 

different sources. We used taxonomic groupings in cases where phylogenetic data 191 

were not available for species in our sample (Hadfield and Nakagawa, 2010). We 192 

obtained phylogenetic trees from several sources. For the basal relationships among 193 

tetrapods we used Xia et al. (2003). For the relationships among amphibians we used 194 

Pyron and Wiens (2011). For the relationships among mammals we used Murphy et 195 

al. (2001). For the relationships among birds we used Hackett et al. (2008) and 196 

Ericson et al. (2006), with trees created using the online tool (birdtree.org) 197 

accompanying Jetz et al. (2012).  198 
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As branch length data were not available for this phylogeny, we first set all 199 

branch lengths to one. The tree was then transformed to make all tips 200 

contemporaneous using FigTree v1.4 using the cladogram option. Thus total branch 201 

length was determined based on the total number of nodes in the tree. The final tree 202 

can be seen in Figure 2. Note that branch lengths are likely underestimated for 203 

distantly related lineages, and overestimated for lineages containing several species 204 

(e.g. Ficedula). 205 

 206 

[Figure 2 about here] 207 

 208 

(e) Meta-analysis 209 

We implemented multilevel meta-analyses using a Bayesian linear mixed-210 

effect model approach. Multilevel meta-analytic models are random-effects models 211 

(see Borenstein et al. 2009) incorporating additional random factors (following 212 

Nakagawa and Santos 2012). This allowed us to control for three potential sources of 213 

non-independence in our data set. In several cases we obtained multiple effect sizes 214 

from a single study, and from different studies testing a single species. We controlled 215 

for this by including study ID and species ID as random effects in all models. Non-216 

independence in effect sizes may also arise due to phylogenetic inertia, so that the 217 

relationship between stress and secondary sexual trait expression is more similar for 218 

closely related species (Hadfield and Nakagawa, 2010; Koricheva et al. 2013). 219 

Phylogeny was thus included as a random effect by incorporating the phylogenetic 220 

tree shown above. All the models presented included study ID, species ID and 221 

phylogeny as random factors. 222 
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Meta-analysis models were implemented using the MCMCglmm function 223 

from the package MCMCglmm (Hadfield 2010). Details on MCMCglmm model 224 

specification and testing are presented in the supplementary material. All results 225 

presented are based on models fitted using an inverse gamma prior for all random 226 

effects and residuals (following Lim et al. 2014). We first ran an intercept-only model 227 

to determine the mean effect size across all studies. We present our results as mean 228 

posterior estimates of r (back-converted from Zr after analysis), and consider a mean 229 

estimate to be significantly different from zero if the highest posterior density interval 230 

(LHPD to UHPD, also known as the 95% credible interval) does not overlap zero.  231 

We assessed the total level of heterogeneity among effect sizes using a 232 

modified version of the I2 statistic (Higgins et al. 2003), following Nakagawa and 233 

Santos (2012). The original I2 statistic describes the percentage of total variation in 234 

effect sizes that is due to heterogeneity rather than chance (Higgins et al. 2003). 235 

However this statistic has to be modified when additional random effects are included 236 

in the model. This method can also be used to partition total heterogeneity into that 237 

associated with each of the random effects in the model (Nakagawa and Santos 2012). 238 

In other words, this allows us to assess the percentage variance in effect size 239 

explained by the different random effects (Lim et al. 2014). Substantial residual 240 

heterogeneity remaining after accounting for the random effects indicates that there 241 

may be further factors influencing effect size that are not included in the model. We 242 

follow Higgins et al. (2003) in considering I2 values of 25%, 5% and 75% as 243 

representing small, medium and large amounts of heterogeneity respectively.  244 

The intercept-only model indicated significant heterogeneity in effect sizes 245 

even after variance associated with the three random factors was accounted for, and so 246 

we next investigated potential moderators of mean effect size using a model-selection 247 
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approach (Nakagawa and Santos 2012). We performed a series of meta-regression 248 

models, each of which included study ID, species ID, and phylogeny as random 249 

effects, and one or more categorical fixed effects. Model fit was determined using the 250 

deviance information criterion (DIC), which is a Bayesian equivalent of traditional 251 

information theoretic criteria, and a change in DIC of 2 or more was considered to 252 

significantly improve model fit (Spiegelhalter et al. 2002). Finally, we used a separate 253 

meta-regression model (minus the intercept) for each categorical fixed effect 254 

(taxonomic class, sex, stress measure and trait type) to estimate the mean effect size 255 

for each factor level. Each model included study ID, species ID and phylogeny as 256 

random effects. 257 

We looked for signs of two types of publication bias in our dataset. First, we 258 

tested for a bias associated with the failure to publish non-significant or positive 259 

results (Koricheva et al. 2013) in two ways. We tested for a relationship between 260 

effect size and study precision (1/SE) using linear regression (Egger et al. 1997). Due 261 

to the potential non-independence of effect sizes in our dataset (due to being 262 

measured in the same study or species, or due to shared ancestry) we used residual 263 

effect size, as residuals are theoretically independent of each other (Nakagawa and 264 

Santos 2012). We also performed a trim-and-fill analysis using the package Metafor 265 

(Viechtbauer 2010). This test explicitly searches for asymmetry in the funnel plot 266 

(showing the relationship between effect sizes and a measure of their variance), which 267 

is assumed to reflect publication bias (Duval and Tweedie 2000). The trim-and-fill 268 

function then imputes “missing” effect sizes until the funnel plot is symmetrical, and 269 

then gives a new effect size estimate from a meta-analysis model including these new 270 

effect sizes (Duval and Tweedie 2000). Again due to non-independence of effect sizes 271 

this analysis was performed on the residuals (Nakagawa and Santos 2012). The 272 
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difference in mean effect size estimated from this analysis was then used to adjust the 273 

original mean effect size (and associated HPD interval) from the intercept-only 274 

model. Second, we assessed whether there was any temporal trend in mean effect size 275 

by testing for the rank correlation between effect size and year of publication 276 

(Koricheva et al. 2013). A significant temporal trend could reflect publication bias if 277 

for example studies showing non-significant effects are less likely to be published 278 

following the early buzz surrounding a new theory (Koricheva et al. 2013). 279 

All analyses were performed using R v3.2.2 (R Development Core Team, 280 

2015). All code used in the analysis is included in the supplementary material. 281 

 282 

RESULTS 283 

Across all effect sizes there was no significant correlation between stress 284 

levels and the degree of secondary sexual signalling (intercept-only MCMCglmm; 285 

posterior mean = -0.08, LHPD = -0.22, UHPD = 0.03, k = 118, Nstudies = 38, Nspecies = 286 

25). There is, therefore, no general signalling of level of stress by secondary sexual 287 

traits across species, stress measures, and traits. Total heterogeneity was large 288 

however (I2total = 77.81%). The amount of variance explained by the three random 289 

factors was small (I2study = 26.76%, I2species = 8.88%, I2phylogeny = 5.59%), with 290 

substantial residual variance remaining after accounting for them (I2residual = 36.59%). 291 

As there was substantial heterogeneity in the dataset, we next used a model-292 

selection approach to investigate potential categorical moderators of effect size. 293 

Adding taxonomic class, sex, or stress measure as a categorical fixed-effect to the 294 

meta-analytic model did not improve the model fit (Table 1). Accordingly, none of 295 

the categories associated with taxonomic class, sex, or stress measure exhibited a 296 

mean effect size that was significantly different from zero (Table 2). However, model 297 
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fit was significantly improved by the addition of secondary sexual trait type as a fixed 298 

effect (Table 1), suggesting this factor explains some of the observed heterogeneity in 299 

effect sizes. A meta-regression indicated that there is a significant negative mean 300 

effect size when considering only those effect sizes associated with opposite-sex 301 

preferences (Table 2), such that stress rended to be assocaited witih mate preferences, 302 

with lower stress individuals favoured. However the the upper highest posterior 303 

density estimate is very close to zero (-0.010). There was no significant effect of the 304 

remaining three secondary sexual trait types. 305 

We found mixed evidence for publication bias in the dataset. Egger’s 306 

regression suggested there was no significant funnel plot asymmetry (F1, 116= 0.1, P= 307 

0.75; β= 0.004, intercept= -0.03). However, a trim-and-fill analysis on the residual 308 

effect sizes suggested that 13 effect sizes were “missing” from the right hand side of 309 

the funnel plot. After imputing these missing effect sizes the mean effect shifted by 310 

0.048 (Figure S1). Adjusting our original mean effect size estimate (from the intercept 311 

only model) using this value still resulted in a non-significant result (mean= -0.032, 312 

LHPD = -0.169, UHPD = 0.075, k= 131). In terms of temporal patterns, we found no 313 

correlation between effect size and year (Spearman’s rank correlation: rs = -0.03, P= 314 

0.77). However all the studies included were published relatively recently (between 315 

2001-2014), and a temporal trend is probably unlikely over such a short range. 316 

 317 

DISCUSSION  318 

 319 

Our meta-analysis did not detect a significant relationship between 320 

physiological indices of stress and the expression of sexually-selected traits across 26 321 

vertebrate species from 4 taxonomic classes. Furthermore, we failed to detect effects 322 
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of stress in any of the four vertebrate orders, in either sex, or when controlling for the 323 

measure of stress employed. However, we did detect a significant effect of the type of 324 

sexually-selected trait, such that stress had significant detrimental effect on opposite 325 

sex preferences, but not on the expression of colouration or vocalisation, or on trait 326 

size.  327 

Opposite sex preference is likely to reflect an aggregate response to the 328 

development of one or more sexually-selected signals and the true ‘attractiveness’ of 329 

an individual to the opposite sex (rather than relying on our judgements of the 330 

attractiveness of trait expression). While our results suggest that members of the 331 

opposite sex attend to cues of stress, we do not know which traits are used in their 332 

assessment. It is possible, for example, that there are behavioural traits in addition to 333 

the morphological traits that we have included here which provide cues to 334 

physiological status (Roberts et al. 2007). In addition, it is possible that effects of 335 

stress on colouration or vocalisation are more nuanced and complex than our analysis 336 

was able to detect. 337 

For instance, effects of stress on colouration may be dependent upon the 338 

nature of the colouration (e.g. melanic versus carotenoid), the context (e.g. breeding 339 

season versus moult) and species ecology (e.g. the mating system). Melanic 340 

coloration, for example, can provide insight into links between the stress response and 341 

sexual signalling as the melanocortins which control the expression of phaeomelanic 342 

coloration (Ducrest et al. 2008) also influence sensitivity to stressors (Ducrest et al. 343 

2008; Roulin and Ducrest 2011). There were, however, only a small number of 344 

studies in which melanic colouration was measured (8 effect sizes from 3 studies, see 345 

Table S3) meaning that it was not possible to test effects of stress on these separately. 346 

A greater number of studies measured carotenoid colouration (n = 14), and in a high 347 
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proportion of those of avian species (21 of 27 effect sizes from 9 studies, see Table 348 

S3), stress had detrimental effects on carotenoid colouration. This colouration is 349 

dependent upon antioxidants acquired in the diet (McGraw 2006) which can be 350 

diverted away from secondary sexual traits and into reduction of oxidative damage 351 

under stress (Fitze et al. 2009). Although this may explain the pattern of stress-352 

induced colour reduction in birds (but see Collins et al. 2008), there was some 353 

evidence that chronically elevated GCs enhanced ventral coloration in males of the 354 

common lizard (Cote et al. 2011). This discrepancy could stem from differences in 355 

species’ ecology, meaning that it is adaptive for males of some species (e.g. the 356 

common lizard) to make a ‘terminal investment’ in mating under stress, perhaps due 357 

to reduced chances of survival (Pryke et al. 2007; Fitze et al. 2008; Bonier et al. 2009; 358 

Huyghe et al. 2009). In biparental mating systems, such as those of many bird species, 359 

the optimal solution to the allocation of energy under stress may be away from mating 360 

effort and into, for example, parental investment. It may not be possible, then, to 361 

detect any effects of stress on colouration until a sufficient number of studies across 362 

species and colouration type are available. 363 

We did not find an effect of stress on vocalisations. More than a third of these 364 

effect sizes were measured in anurans during the breeding season (14 of 37 effect 365 

sizes). A number of studies have shown glucocorticoids to be elevated across the 366 

breeding season, with those individuals who vocalise the most showing the highest 367 

levels (Gladbach et al. 2010; Goymann and Wingfield 2004). At threshold GC levels, 368 

however, males change their strategy and stop calling, likely on reaching a negative 369 

energy balance (Emerson 2001). As this threshold depends upon intrinsic (e.g. 370 

condition) and extrinsic (e.g. rainfall, chorus density) factors, despite the organising 371 

role of GCs on calling strategy within individuals, consistent effects may not be easily 372 
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detected across individuals and studies (Emerson 2001). The majority of the 373 

remainder of effect sizes categorised as ‘vocalisations’ were for effects of stress on 374 

dimensions of birdsong. There is reason to predict that birdsong is linked to 375 

dimensions of the stress response as the brain centres responsible for song develop 376 

early in life, during which time conditions also determine adult stress resistance 377 

(Buchanan et al. 2004; Pfaff et al. 2007; Muller et al. 2010). Both may stem from a 378 

common phenotype (Spencer and MacDougall-Shackleton 2011), rather than song 379 

responding to fluctuations in adult stress. Failure to find effects on vocalisation, then, 380 

may stem from the fact that relationships between stress and vocalisation are non-381 

linear and context-dependent, and that effects on birdsong and amphibian vocalisation 382 

may be functionally different. 383 

Potential roles of stress on the expression of sexually selected traits have 384 

included indirect effects of glucocorticoids via the immune system (Møller 1995; 385 

Buchanan 2000), body condition (Husak and Moore 2008), or testosterone (Buchanan 386 

2000; Roberts et al. 2007; Husak and Moore 2008), or via sexual selection on the 387 

physiological stress response itself. In the former, the effects of stress on sexual traits 388 

would likely be difficult to detect without measuring, and controlling for, its effects 389 

on testosterone, immune function, and body condition. In the latter, sexual signals 390 

would provide cues to individual differences in dimensions of the stress response such 391 

as stress reactivity or the efficiency of negative feedback (Pfaff et al. 2007; Roberts et 392 

al. 2007; Husak and Moore 2008; Bortolotti et al. 2009; Schmidt et al. 2012). While a 393 

number of studies included in our analyses reported various indices of immune 394 

function, testosterone, and body condition, there were insufficient numbers to test for 395 

their roles in our model. A promising avenue for future research is analysis of 396 

individual differences in the stress response, which may provide the necessary 397 
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conditions for the evolution of condition dependent traits (e.g. Moore and Hopkins 398 

2009). Individual differences in stress reactivity and the efficiency of negative 399 

feedback, for example, are heritable (Rowe and Houle 1996; Evans et al. 2005; Korte 400 

et al. 2005; Stowe et al. 2010), and production and effects of GCs are related to 401 

measures of genetic quality (Olsson et al. 2005) and fitness (Bonier et al. 2009). An 402 

efficient stress response is likely to be comprised of low baseline GCs, moderate 403 

elevation, and rapid negative feedback once the stressor has passed (Olsson et al. 404 

2005; de Kloet et al. 2008). While peak GC response to a standardized stressor was 405 

not significantly related to expression of secondary sexual traits in our analyses 406 

(although the sample size was small; n = 9 effect sizes, see Table S3), an inverse 407 

relationship between a sexual signal and sensitivity of negative feedback (Schmidt et 408 

al. 2012) and a finding (excluded from our analyses due to lack of statistical 409 

information) that female zebra finches preferred males from lines bred for low peak 410 

GC response (Roberts et al. 2007), further support this as an important future research 411 

direction. 412 

It is, however, extremely difficult to measure these dimensions of the stress 413 

response, particularly in free-living individuals. Regulation of glucocorticoids in 414 

response to predictable seasonal challenges such as the moult (Husak and Moore 415 

2008; Romero et al. 2005) or breeding (Kitaysky et al. 1999), for example, may have 416 

different effects on the allocation of resources to sexual signalling than those due to 417 

unpredictable stressors (O’Reilly and Wingfield 2001). This demonstrates the need 418 

for multiple measures of the stress response, long-term stress, and stress history in 419 

future research. While this is undoubtedly difficult, records of local weather 420 

conditions, season, resource availability and population density, for example, could be 421 

controlled for in analyses. Repeated measures of stress provide a more ecologically 422 
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valid assessment of the experience of stress (Bonier et al. 2009). More comprehensive 423 

measurements of the stress response, including duration, total GCs released in 424 

response to an ecologically valid, standardised stressor, and the efficiency of negative 425 

feedback (Romero 2004), provide a set of dimensions of the stress response with 426 

which to compare individuals. In addition, the concentration and distribution of GC 427 

receptors may be more meaningful measures of individual differences in stress 428 

reactivity in terms of effects on morphological and behavioural traits than GC 429 

production itself (Schmidt et al. 2012).  430 

Our analysis controlled for phylogenetic relatedness among species. The 431 

amount of variance in effect size explained by phylogeny was very small. This could 432 

be for several reasons. First, it may be that the relationship between stress and 433 

secondary sexual trait expression is highly evolutionarily labile, so that phylogenetic 434 

effects are important only for very closely related species. This may be especially 435 

likely for those studies concerning male vocalisation, as behavioural traits such as 436 

these may evolve particularly rapidly (Blomberg et al. 2003), and is frequently seen in 437 

meta-analyses concerning behavioural traits (e.g Santos et al. 2011; Dougherty and 438 

Shuker, 2015).Alternatively, this could be an artefact of the fact that the average 439 

phylogenetic distance between species in our tree is relatively large (Björklund 1997). 440 

With such a tree the power to detect a phylogenetic signal is reduced, especially if 441 

there is substantial variation across species in factors (such as physiology or 442 

behaviour) that may affect the relationship we are investigating. 443 

In conclusion, stress was not associated with the expression of sexually-444 

selected traits in our sample. The results therefore challenge any notion of a common 445 

stress-signalling function for sexual signals. It was, however, associated with the 446 

strength of preference for the opposite sex, sugesting that stress is relevant to mating 447 
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decisions but that our analysis was not able to detect the specific traits through which 448 

it is signalled. This means that stress may be important for mate choice, but it does not 449 

provide a simple explanation for the role of any one sexual display or signal. This 450 

discrepancy therefore needs resolving. Our findings add to the body of work which 451 

seeks to identify how stress can moderate the expression of physical and behavioural 452 

traits more generally (e.g. Lupien et al. 2009; Buchanan et al. 2013). We argue that in 453 

order to advance our understanding of roles of stress in sexual selection, we need to 454 

develop a model which incorporates the nuanced effects of species ecology, trait type, 455 

ecological context and the complex nature of the physiological stress response. 456 

 457 
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FIGURE LEGENDS 862 

 863 

Figure 1. PRISMA flow chart showing results of literature search and study selection 864 

criteria and process. Table S1 shows studies excluded from analyses. 865 

 866 

Figure 2. Phylogeny included in meta-analysis. For details please main text. 867 

 868 

Page 36 of 38Behavioral Ecology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly
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